Efficient indexing methods for probabilistic threshold queries over uncertain data

  • Authors:
  • Reynold Cheng;Yuni Xia;Sunil Prabhakar;Rahul Shah;Jeffrey Scott Vitter

  • Affiliations:
  • Department of Computer Sciences, Purdue University, West Lafayette, IN;Department of Computer Sciences, Purdue University, West Lafayette, IN;Department of Computer Sciences, Purdue University, West Lafayette, IN;Department of Computer Sciences, Purdue University, West Lafayette, IN;Department of Computer Sciences, Purdue University, West Lafayette, IN

  • Venue:
  • VLDB '04 Proceedings of the Thirtieth international conference on Very large data bases - Volume 30
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

It is infeasible for a sensor database to contain the exact value of each sensor at all points in time. This uncertainty is inherent in these systems due to measurement and sampling errors, and resource limitations. In order to avoid drawing erroneous conclusions based upon stale data, the use of uncertainty intervals that model each data item as a range and associated probability density function (pdf) rather than a single value has recently been proposed. Querying these uncertain data introduces imprecision into answers, in the form of probability values that specify the likeliness the answer satisfies the query. These queries are more expensive to evaluate than their traditional counterparts but are guaranteed to be correct and more informative due to the probabilities accompanying the answers. Although the answer probabilities are useful, for many applications, it is only necessary to know whether the probability exceeds a given threshold - we term these Probabilistic Threshold Queries (PTQ). In this paper we address the efficient computation of these types of queries. In particular, we develop two index structures and associated algorithms to efficiently answer PTQs. The first index scheme is based on the idea of augmenting uncertainty information to an R-tree. We establish the difficulty of this problem by mapping one-dimensional intervals to a two-dimensional space, and show that the problem of interval indexing with probabilities is significantly harder than interval indexing which is considered a well-studied problem. To overcome the limitations of this R-tree based structure, we apply a technique we call variance-based clustering, where data points with similar degrees of uncertainty are clustered together. Our extensive index structure can answer the queries for various kinds of uncertainty pdfs, in an almost optimal sense. We conduct experiments to validate the superior performance of both indexing schemes.