Range counting coresets for uncertain data

  • Authors:
  • Amirali Abdullah;Samira Daruki;Jeff M. Phillips

  • Affiliations:
  • University of Utah, Salt Lake City, UT, USA;University of Utah, Salt Lake City, UT, USA;University of Utah, Salt Lake City, UT, USA

  • Venue:
  • Proceedings of the twenty-ninth annual symposium on Computational geometry
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study coresets for various types of range counting queries on uncertain data. In our model each uncertain point has a probability density describing its location, sometimes defined as k distinct locations. Our goal is to construct a subset of the uncertain points, including their locational uncertainty, so that range counting queries can be answered by just examining this subset. We study three distinct types of queries. RE queries return the expected number of points in a query range. RC queries return the number of points in the range with probability at least a threshold. RQ queries returns the probability that fewer than some threshold fraction of the points are in the range. In both RC and RQ coresets the threshold is provided as part of the query. And for each type of query we provide coreset constructions with approximation-size tradeoffs. We show that random sampling can be used to construct each type of coreset, and we also provide significantly improved bounds using discrepancy-based approaches on axis-aligned range queries.