Numerical Function Generators Using Edge-Valued Binary Decision Diagrams

  • Authors:
  • S. Nagayama;T. Sasao;J. T. Butler

  • Affiliations:
  • Dept. of Comput. Eng., Hiroshima City Univ.;-;-

  • Venue:
  • ASP-DAC '07 Proceedings of the 2007 Asia and South Pacific Design Automation Conference
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce the edge-valued binary decision diagram (EVBDD) to reduce the memory and delay in numerical function generators (NFGs). An NFG realizes a function, such as a trigonometric, logarithmic, square root, or reciprocal function, in hardware. NFGs are important in, for example, digital signal applications, where high speed and accuracy are necessary. We use the EVBDD to produce a fast and compact segment index encoder (SIE) that is a key component in our NFG. We compare our approach with NFG designs based on multi-terminal BDDs (MTBDDs), and show that the EVBDD produces SIEs that have, on average, only 7% of the memory and 40% of the delay of those designed using MTBDDs. Therefore, our NFGs based on EVBDDs have, on average, only 38% of the memory and 59% of the delay of NFGs based on MTBDDs.