Informed Microarchitecture Design Space Exploration Using Workload Dynamics

  • Authors:
  • Chang-Burm Cho;Wangyuan Zhang;Tao Li

  • Affiliations:
  • -;-;-

  • Venue:
  • Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Program runtime characteristics exhibit significant variation. As microprocessor architectures become more complex, their efficiency depends on the capability of adapting with workload dynamics. Moreover, with the approaching billion-transistor microprocessor era, it is not always economical or feasible to design processors with thermal cooling and reliability redundancy capabilities that target an application's worst case scenario. Therefore, analyzing complex workload dynamics early, at the microarchitecture design stage, is crucial to forecast workload runtime behavior across architecture design alternatives and evaluate the efficiency of workload scenario- based architecture optimizations. Existing methods focus exclusively on predicting aggregated workload behavior. In this paper, we propose accurate and efficient techniques and models to reason about workload dynamics across the microarchitecture design space without using detailed cycle- level simulations. Our proposed techniques employ wavelet- based multiresolution decomposition and neural network based non-linear regression modeling. We extensively evaluate the efficiency of our predictive models in forecasting performance, power and reliability domain workload dynamics that the SPEC CPU 2000 benchmarks manifest on high-performance microprocessors with a microarchitecture design space that consists of 9 key parameters. Our results show that the models achieve high accuracy in revealing workload dynamic behavior across a large microarchitecture design space. We also demonstrate that the proposed techniques can be used to efficiently explore workload scenario-driven architecture optimizations.