Emulating Optimal Replacement with a Shepherd Cache

  • Authors:
  • Kaushik Rajan;Govindarajan Ramaswamy

  • Affiliations:
  • -;-

  • Venue:
  • Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The inherent temporal locality in memory accesses is filtered out by the L1 cache. As a consequence, an L2 cache with LRU replacement incurs significantly higher misses than the optimal replacement policy (OPT). We propose to narrow this gap through a novel replacement strategy that mimics the replacement decisions of OPT. The L2 cache is logically divided into two components, a Shepherd Cache (SC) with a simple FIFO replacement and a Main Cache (MC) with an emulation of optimal replacement. The SC plays the dual role of caching lines and guiding the replacement decisions in MC. Our pro- posed organization can cover 40% of the gap between OPT and LRU for a 2MB cache resulting in 7% overall speedup. Comparison with the dynamic insertion policy, a victim buffer, a V-Way cache and an LRU based fully associative cache demonstrates that our scheme performs better than all these strategies.