Maintaining deforming surface meshes

  • Authors:
  • Siu-Wing Cheng;Tamal K. Dey

  • Affiliations:
  • HKUST, Clear Water Bay, Hong Kong;The Ohio State University, Columbus, OH

  • Venue:
  • Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a method to maintain a mesh approximating a deforming surface, which is specified by a dense set of sample points. We identify a reasonable motion model for which a provably good surface mesh can be maintained. Our algorithm determines the appropriate times at which the mesh is updated to maintain a good approximation. The updates use simple primitives, and no costly computation such as line-surface intersection is necessary. Point insertions and deletions are allowed at the updates. Each update takes time linear in the size of the current sample set plus the new sample points inserted. We also construct examples for which, under the same model, no other algorithm makes asymptotically fewer changes to the mesh than our algorithm.