Investigation of leading HPC I/O performance using a scientific-application derived benchmark

  • Authors:
  • Julian Borrill;Leonid Oliker;John Shalf;Hongzhang Shan

  • Affiliations:
  • Lawrence Berkeley National Laboratory, Berkeley, CA;Lawrence Berkeley National Laboratory, Berkeley, CA;Lawrence Berkeley National Laboratory, Berkeley, CA;Lawrence Berkeley National Laboratory, Berkeley, CA

  • Venue:
  • Proceedings of the 2007 ACM/IEEE conference on Supercomputing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the exponential growth of high-fidelity sensor and simulated data, the scientific community is increasingly reliant on ultrascale HPC resources to handle their data analysis requirements. However, to utilize such extreme computing power effectively, the I/O components must be designed in a balanced fashion, as any architectural bottleneck will quickly render the platform intolerably inefficient. To understand I/O performance of data-intensive applications in realistic computational settings, we develop a lightweight, portable benchmark called MADbench2, which is derived directly from a large-scale Cosmic Microwave Background (CMB) data analysis package. Our study represents one of the most comprehensive I/O analyses of modern parallel filesystems, examining a broad range of system architectures and configurations, including Lustre on the Cray XT3 and Intel Itanium2 cluster; GPFS on IBM Power5 and AMD Opteron platforms; two BlueGene/L installations utilizing GPFS and PVFS2 filesystems; and CXFS on the SGI Altix3700. We present extensive synchronous I/O performance data comparing a number of key parameters including concurrency, POSIX- versus MPI-IO, and unique- versus shared-file accesses, using both the default environment as well as highly-tuned I/O parameters. Finally, we explore the potential of asynchronous I/O and quantify the volume of computation required to hide a given volume of I/O. Overall our study quantifies the vast differences in performance and functionality of parallel filesystems across state-of-the-art platforms, while providing system designers and computational scientists a lightweight tool for conducting further analyses.