Toward millions of file system IOPS on low-cost, commodity hardware

  • Authors:
  • Da Zheng;Randal Burns;Alexander S. Szalay

  • Affiliations:
  • Johns Hopkins University;Johns Hopkins University;Johns Hopkins University

  • Venue:
  • SC '13 Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS based on a userspace file abstraction for arrays of commodity SSDs. The file abstraction refactors I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The system includes a set-associative, parallel page cache in the user space. We redesign page caching to eliminate CPU overhead and lock-contention in non-uniform memory architecture machines. We evaluate our design on a 32 core NUMA machine with four, eight-core processors. Experiments show that our design delivers 1.23 million 512-byte read IOPS. The page cache realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O performance linearly with cache hit rates. The parallel, set-associative cache matches the cache hit rates of the global Linux page cache under real workloads.