Optimal speedup on a low-degree multi-core parallel architecture (LoPRAM)

  • Authors:
  • Reza Dorrigiv;Alejandro López-Ortiz;Alejandro Salinger

  • Affiliations:
  • University of Waterloo, Waterloo, ON, Canada;University of Waterloo, Waterloo, ON, Canada;University of Waterloo, Waterloo, ON, Canada

  • Venue:
  • Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Over the last five years, major microprocessor manufacturers have released plans for a rapidly increasing number of cores per microprossesor, with upwards of 64 cores by 2015. In this setting, a sequential RAM computer will no longer accurately reflect the architecture on which algorithms are being executed. In this paper we propose a model of low degree parallelism (LoPRAM) which builds upon the RAM and PRAM models yet better reflects recent advances in parallel (multi-core) architectures. This model supports a high level of abstraction that simplifies the design and analysis of parallel programs. More importantly we show that in many instances it naturally leads to work-optimal parallel algorithms via simple modifications to sequential algorithms.