Camera Motion Estimation Through Planar Deformation Determination

  • Authors:
  • C. Jonchery;F. Dibos;G. Koepfler

  • Affiliations:
  • MAP5, Université Paris Descartes, Paris Cedex 06, France 75270;LAGA, L2TI Université Paris 13, Villetaneuse, France 93430;MAP5, Université Paris Descartes, Paris Cedex 06, France 75270

  • Venue:
  • Journal of Mathematical Imaging and Vision
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a global method for estimating the motion of a camera which films a static scene. Our approach is direct, fast and robust, and deals with adjacent frames of a sequence. It is based on a quadratic approximation of the deformation between two images, in the case of a scene with constant depth in the camera coordinate system. This condition is very restrictive but we show that, provided translation and depth inverse variations are small enough, the error on optical flow involved by the approximation of depths by a constant is small. In this context, we propose a new model of camera motion which allows to separate the image deformation in a similarity and a "purely" projective application, due to change of optical axis direction. This model leads to a quadratic approximation of image deformation that we estimate with an M-estimator; we can immediately deduce camera motion parameters.