An asynchronous hybrid genetic-simplex search for modeling the Milky Way galaxy using volunteer computing

  • Authors:
  • Travis Desell;Boleslaw Szymanski;Carlos Varela

  • Affiliations:
  • Rensselaer Polytechnic Institute, Troy, NY, USA;Rensselaer Polytechnic Institute, Troy, NY, USA;Renssealer Polytechnic Institute, Troy, NY, USA

  • Venue:
  • Proceedings of the 10th annual conference on Genetic and evolutionary computation
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper examines the use of a probabilistic simplex operator for asynchronous genetic search on the BOINC volunteer computing framework. This algorithm is used to optimize a computationally intensive function with a continuous parameter space: finding the optimal fit of an astronomical model of the Milky Way galaxy to observed stars. The asynchronous search using a BOINC community of over 1,000 users is shown to be comparable to a synchronous continuously updated genetic search on a 1,024 processor partition of an IBM BlueGene/L supercomputer. The probabilistic simplex operator is also shown to be highly effective and the results demonstrate that increasing the parents used to generate offspring improves the convergence rate of the search. Additionally, it is shown that there is potential for improvement by refining the range of the probabilistic operator, adding more parents, and generating offspring differently for volunteered computers based on their typical speed in reporting results. The results provide a compelling argument for the use of asynchronous genetic search and volunteer computing environments, such as BOINC, for computationally intensive optimization problems and, therefore, this work opens up interesting areas of future research into asynchronous optimization methods.