Kinematic and dynamic model-based control of wheeled mobile manipulators: A unified framework for reactive approaches

  • Authors:
  • V. Padois;J.-y. Fourquet;P. Chiron

  • Affiliations:
  • Stanford artificial intelligence laboratory, stanford university, ca 94305, usa;Laboratoire génie de production, ecole nationale d'ingénieurs de tarbes, 65 000 tarbes, france;Laboratoire génie de production, ecole nationale d'ingénieurs de tarbes, 65 000 tarbes, france

  • Venue:
  • Robotica
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The work presented in this paper aims at providing a unified modelling framework for the reactive control of wheeled mobile manipulators (WMM). Where most work in the literature often provides models, sometimes simplified, of a given type of WMM, an extensive description of obtaining explicit kinematic and dynamic models of those systems is given. This modelling framework is particularly well suited for reactive control approaches, which, in the case of mobile manipulation missions, are often necessary to handle the complexity of the tasks to be fulfilled, the dynamic aspect of the extended workspace and the uncertainties on the knowledge of the environment. A flexible reactive framework is thus also provided, allowing the sequencing of operational tasks (in our case, tasks described in the end-effector frame) whose natures are different but also an on-line switching mechanism between constraints that are to be satisfied using the system redundancy. This framework has been successfully implemented in simulation and on a real robot. Some of the obtained results are presented.