BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm

  • Authors:
  • William Yeoh;Ariel Felner;Sven Koenig

  • Affiliations:
  • University of Southern California, Los Angeles, CA;Ben-Gurion University, Beer-Sheva, Israel;University of Southern California, Los Angeles, CA

  • Venue:
  • Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems - Volume 2
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Distributed constraint optimization (DCOP) problems are a popular way of formulating and solving agent-coordination problems. It is often desirable to solve DCOP problems optimally with memory-bounded and asynchronous algorithms. We introduce Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded asynchronous DCOP algorithm that uses the message passing and communication framework of ADOPT, a well known memory-bounded asynchronous DCOP algorithm, but changes the search strategy of ADOPT from best-first search to depth-first branch-and-bound search. Our experimental results show that BnB-ADOPT is up to one order of magnitude faster than ADOPT on a variety of large DCOP problems and faster than NCBB, a memory-bounded synchronous DCOP algorithm, on most of these DCOP problems.