Decentralised coordination of low-power embedded devices using the max-sum algorithm

  • Authors:
  • A. Farinelli;A. Rogers;A. Petcu;N. R. Jennings

  • Affiliations:
  • University of Southampton, Southampton, UK;University of Southampton, Southampton, UK;AI Laboratory (LIA), Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland;University of Southampton, Southampton, UK

  • Venue:
  • Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems - Volume 2
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper considers the problem of performing decentralised co-ordination of low-power embedded devices (as is required within many environmental sensing and surveillance applications). Specifically, we address the generic problem of maximising social welfare within a group of interacting agents. We propose a novel representation of the problem, as a cyclic bipartite factor graph, composed of variable and function nodes (representing the agents' states and utilities respectively). We show that such representation allows us to use an extension of the max-sum algorithm to generate approximate solutions to this global optimisation problem through local decentralised message passing. We empirically evaluate this approach on a canonical coordination problem (graph colouring), and benchmark it against state of the art approximate and complete algorithms (DSA and DPOP). We show that our approach is robust to lossy communication, that it generates solutions closer to those of DPOP than DSA is able to, and that it does so with a communication cost (in terms of total messages size) that scales very well with the number of agents in the system (compared to the exponential increase of DPOP). Finally, we describe a hardware implementation of our algorithm operating on low-power Chipcon CC2431 System-on-Chip sensor nodes.