An optimal GTS scheduling algorithm for time-sensitive transactions in IEEE 802.15.4 networks

  • Authors:
  • Chewoo Na;Yaling Yang;Amitabh Mishra

  • Affiliations:
  • Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA;Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA;Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

IEEE 802.15.4 is a new enabling standard for low-rate wireless personal area networks and has been widely accepted as a de facto standard for wireless sensor networking. While primary motivations behind 802.15.4 are low power and low cost wireless communications, the standard also supports time and rate sensitive applications because of its ability to operate in TDMA access modes. The TDMA mode of operation is supported via the Guaranteed Time Slot (GTS) feature of the standard. In a beacon-enabled network topology, the Personal Area Network (PAN) coordinator reserves and assigns the GTS to applications on a first-come-first-served (FCFS) basis in response to requests from wireless sensor nodes. This fixed FCFS scheduling service offered by the standard may not satisfy the time constraints of time-sensitive transactions with delay deadlines. Such operating scenarios often arise in wireless video surveillance and target detection applications running on sensor networks. In this paper, we design an optimal work-conserving scheduling algorithm for meeting the delay constraints of time-sensitive transactions and show that the proposed algorithm outperforms the existing scheduling model specified in IEEE 802.15.4.