A Fuzzy Controller for Autonomous Negotiation of Stairs by a Mobile Robot with Adjustable Tracks

  • Authors:
  • Winai Chonnaparamutt;Andreas Birk

  • Affiliations:
  • School of Engineering and Science, Jacobs University Bremen, Bremen, Germany D-28759;School of Engineering and Science, Jacobs University Bremen, Bremen, Germany D-28759

  • Venue:
  • RoboCup 2007: Robot Soccer World Cup XI
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Tracked mobile robots with adjustable support tracks or flippers are popular promising solutions for negotiating rough terrain and 3D obstacles. Though many according robot bases are in principle physically capable of climbing stairs, it is a non-trivial control-task for a remote tele-operator, especially when the user can not directly see the robot like in search and rescue scenarios. To limit training requirements and to ease the cognitive load on operators, respectively to enable fully autonomous rescue robots, we developed a fuzzy controller for this task, which adjusts the drive forces and the posture of the flipper. The design of the controller is guided by observing the strategies of a trained user when tele-operating a robot with unlimited visual information. In doing so, an Open Dynamics Engine (ODE) simulation of our robot is used where the full set of all physical parameters is accessible for analysis. Based on this data, it is shown in several experiments that the controller is not only capable of climbing stairs but that it does so in a more efficient manner than the human user who served as training model.