Distributed Resource Kernels: OS Support for End-To-End Resource Isolation

  • Authors:
  • Karthik Lakshmanan;Raj Rajkumar

  • Affiliations:
  • -;-

  • Venue:
  • RTAS '08 Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications Symposium
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The notion of resource reservation for obtaining real-time scheduling guarantees and enforcement of resource usage has gained strong support in recent years. However, much work on resource reservation has primarily focused on single-processor systems. In this paper, we propose the distributed resource kernel framework to deploy distributed real-time applications with end-to-end timing constraints, and to efficiently enforce and monitor their usage. Modern distributed real-time systems host multiple applications, where each application can span two or more processors. Timing bugs in one distributed application can affect the timing properties of other applications in the system. Our framework introduces the abstraction of a distributed resource container as an isolated virtual operating environment for a distributed real-time application. We have implemented this framework by extending our open-source single node Linux/RK platform. A deployment and monitoring tool called dMon is also provided. We evaluate the framework’s ability to provide timing guarantees by stress-testing the system using the Distributed Hartstone benchmarks. An audio processing pipeline is then used to illustrate the temporal isolation support provided by the Distributed RK framework. The distributed container abstraction can also be extended in the future to support security and fault-tolerance attributes.