Testing halfspaces

  • Authors:
  • Kevin Matulef;Ryan O'Donnell;Ronitt Rubinfeld;Rocco A. Servedio

  • Affiliations:
  • MIT;CMU;MIT;Columbia

  • Venue:
  • SODA '09 Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper addresses the problem of testing whether a Boolean-valued function f is a halfspace, i.e. a function of the form f(x) = sgn(w · x - θ). We consider halfspaces over the continuous domain Rn (endowed with the standard multivariate Gaussian distribution) as well as halfspaces over the Boolean cube {−1, 1}n (endowed with the uniform distribution). In both cases we give an algorithm that distinguishes halfspaces from functions that are ε-far from any halfspace using only poly(1/ε) queries, independent of the dimension n. Two simple structural results about halfspaces are at the heart of our approach for the Gaussian distribution: the first gives an exact relationship between the expected value of a halfspace f and the sum of the squares of f's degree-1 Hermite coefficients, and the second shows that any function that approximately satisfies this relationship is close to a halfspace. We prove analogous results for the Boolean cube {−1, 1}n (with Fourier coefficients in place of Hermite coefficients) for balanced halfspaces in which all degree-1 Fourier coefficients are small. Dealing with general halfspaces over {−1, 1}n poses significant additional complications and requires other ingredients. These include "cross-consistency" versions of the results mentioned above for pairs of halfspaces with the same weights but different thresholds; new structural results relating the largest degree-1 Fourier coefficient and the largest weight in unbalanced halfspaces; and algorithmic techniques from recent work on testing juntas [FKR+02].