Expander flows, geometric embeddings and graph partitioning

  • Authors:
  • Sanjeev Arora;Satish Rao;Umesh Vazirani

  • Affiliations:
  • Princeton University, Princeton, New Jersey;UC Berkeley, Berkeley, California;UC Berkeley, Berkeley, California

  • Venue:
  • Journal of the ACM (JACM)
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We give a O(&sqrt;log n)-approximation algorithm for the sparsest cut, edge expansion, balanced separator, and graph conductance problems. This improves the O(log n)-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in Rd, whose proof makes essential use of a phenomenon called measure concentration. We also describe an interesting and natural “approximate certificate” for a graph's expansion, which involves embedding an n-node expander in it with appropriate dilation and congestion. We call this an expander flow.