Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning

  • Authors:
  • Michael R. Hines;Kartik Gopalan

  • Affiliations:
  • Binghamton University, Binghamton, NY, USA;Binghamton University, Binghamton, NY, USA

  • Venue:
  • Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present the design, implementation, and evaluation of post-copy based live migration for virtual machines (VMs) across a Gigabit LAN. Live migration is an indispensable feature in today's virtualization technologies. Post-copy migration defers the transfer of a VM's memory contents until after its processor state has been sent to the target host. This deferral is in contrast to the traditional pre-copy approach, which first copies the memory state over multiple iterations followed by a final transfer of the processor state. The post-copy strategy can provide a "win-win" by reducing total migration time closer to its equivalent time achieved by non-live VM migration. This is done while maintaining the liveness benefits of the pre-copy approach. We compare post-copy extensively against the traditional pre-copy approach on top of the Xen Hypervisor. Using a range of VM workloads we show improvements in several migration metrics including pages transferred, total migration time and network overhead. We facilitate the use of post-copy with adaptive pre-paging in order to eliminate all duplicate page transmissions. Our implementation is able to reduce the number of network-bound page faults to within 21% of the VM's working set for large workloads. Finally, we eliminate the transfer of free memory pages in both migration schemes through a dynamic self-ballooning (DSB) mechanism. DSB periodically releases free pages in a guest VM back to the hypervisor and significantly speeds up migration with negligible performance degradation.