Modular verification of dynamically adaptive systems

  • Authors:
  • Ji Zhang;Heather J. Goldsby;Betty H.C. Cheng

  • Affiliations:
  • Michigan State University, East Lansing, MI, USA;Michigan State University, East Lansing, MI, USA;Michigan State University, East Lansing, MI, USA

  • Venue:
  • Proceedings of the 8th ACM international conference on Aspect-oriented software development
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cyber-physical systems increasingly rely on dynamically adaptive programs to respond to changes in their physical environment; examples include ecosystem monitoring and disaster relief systems. These systems are considered high-assurance since errors during execution could result in injury, loss of life, environmental impact, and/or financial loss. In order to facilitate the development and verification of dynamically adaptive systems, we separate functional concerns from adaptive concerns. Specifically, we model a dynamically adaptive program as a collection of (non-adaptive) steady-state programs and a set of adaptations that realize transitions among steady state programs in response to environmental changes. We use Linear Temporal Logic (LTL) to specify properties of the non-adaptive portions of the system, and we use A-LTL (an adapt-operator extension toLTL) to concisely specify properties that hold during the adaptation process. Model checking offers an attractive approach to automatically analyzing models for adherence to formal properties and thus providing assurance. However, currently, model checkers are unable to verify properties specified using A-LTL. Moreover, as the number of steady-state programs and adaptations increase, the verification costs (in terms of space and time) potentially become unwieldy. To address these issues, we propose a modular model checking approach to verifying that a formal model of an adaptive program satisfies its requirements specified in LTL and A-LTL, respectively.