Weak-Key Classes of 7-Round MISTY 1 and 2 for Related-Key Amplified Boomerang Attacks

  • Authors:
  • Eunjin Lee;Jongsung Kim;Deukjo Hong;Changhoon Lee;Jaechul Sung;Seokhie Hong;Jongin Lim

  • Affiliations:
  • -;-;-;-;-;-;-

  • Venue:
  • IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In 1997, M. Matsui proposed secret-key cryptosystems called MISTY 1 and MISTY 2, which are 8-and 12-round block ciphers with a 64-bit block, and a 128-bit key. They are designed based on the principle of provable security against differential and linear cryptanalysis. In this paper we present large collections of weak-key classes encompassing 273 and 270 weak keys for 7-round MISTY 1 and 2 for which they are vulnerable to a related-key amplified boomerang attack. Under our weak-key assumptions, the related-key amplified boomerang attack can be applied to 7-round MISTY 1 and 2 with 254, 256 chosen plaintexts and 255.3 7-round MISTY 1 encryptions, 265 7-round MISTY 2 encryptions, respectively.