A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

  • Authors:
  • Hongfeng Wang;Dingwei Wang;Shengxiang Yang

  • Affiliations:
  • Northeastern University, School of Information Science and Engineering, 110004, Shenyang, People’s Republic of China;Northeastern University, School of Information Science and Engineering, 110004, Shenyang, People’s Republic of China;University of Leicester, Department of Computer Science, University Road, LE1 7RH, Leicester, UK

  • Venue:
  • Soft Computing - A Fusion of Foundations, Methodologies and Applications - Special Issue on Emerging Trends in Soft Computing - Memetic Algorithms; Guest Editors: Yew-Soon Ong, Meng-Hiot Lim, Ferrante Neri, Hisao Ishibuchi
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.