Unconditionally secure message transmission in arbitrary directed synchronous networks tolerating generalized mixed adversary

  • Authors:
  • Kannan Srinathan;Arpita Patra;Ashish Choudhary;C. Pandu Rangan

  • Affiliations:
  • IIIT Hyderabad;IIT Madras, India;IIT Madras, India;IIT Madras, India

  • Venue:
  • Proceedings of the 4th International Symposium on Information, Computer, and Communications Security
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we re-visit the problem of unconditionally secure message transmission (USMT) from a sender S to a receiver R, who are part of a distributed synchronous network, modeled as an arbitrary directed graph. Some of the intermediate nodes between S and R can be under the control of an adversary having unbounded computing power. Desmedt and Wang [4] have given the characterization of USMT in directed networks. However, in their model, the underlying network is abstracted as directed node disjoint paths (also called as wires/channels) between S and R, where the intermediate nodes are oblivious, message passing nodes and perform no other computation. In this work, we first show that the characterization of USMT given by Desmedt et.al [4] does not hold good for arbitrary directed networks, where the intermediate nodes can perform some computation, beside acting as message forwarding nodes. We then give the characterization of USMT in arbitrary directed networks, considering the entire network as a whole. As far our knowledge is concerned, this is the first ever characterization of USMT in arbitrary directed networks.