Key Agreement from Close Secrets over Unsecured Channels

  • Authors:
  • Bhavana Kanukurthi;Leonid Reyzin

  • Affiliations:
  • Boston University Computer Science, Boston, USA 02215;Boston University Computer Science, Boston, USA 02215

  • Venue:
  • EUROCRYPT '09 Proceedings of the 28th Annual International Conference on Advances in Cryptology: the Theory and Applications of Cryptographic Techniques
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider information-theoretic key agreement between two parties sharing somewhat different versions of a secret w that has relatively little entropy. Such key agreement, also known as information reconciliation and privacy amplification over unsecured channels, was shown to be theoretically feasible by Renner and Wolf (Eurocrypt 2004), although no protocol that runs in polynomial time was described. We propose a protocol that is not only polynomial-time, but actually practical, requiring only a few seconds on consumer-grade computers. Our protocol can be seen as an interactive version of robust fuzzy extractors (Dodis et al., Crypto 2006). While robust fuzzy extractors, due to their noninteractive nature, require w to have entropy at least half its length, we have no such constraint. In fact, unlike in prior solutions, in our solution the entropy loss is essentially unrelated to the length or the entropy of w , and depends only on the security parameter.