A proxy-based integrated cache consistency and mobility management scheme for client-server applications in Mobile IP systems

  • Authors:
  • Weiping He;Ing-Ray Chen

  • Affiliations:
  • Department of Computer Science, Virginia Tech, Northern Virginia Center, 7054 Haycock Road, Falls Church, VA 22043, United States;Department of Computer Science, Virginia Tech, Northern Virginia Center, 7054 Haycock Road, Falls Church, VA 22043, United States

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we investigate a proxy-based integrated cache consistency and mobility management scheme for supporting client-server applications in Mobile IP systems with the objective to minimize the overall network traffic generated. Our cache consistency management scheme is based on a stateful strategy by which cache invalidation messages are asynchronously sent by the server to a mobile host (MH) whenever data objects cached at the MH have been updated. We use a per-user proxy to buffer invalidation messages to allow the MH to disconnect arbitrarily and to reduce the number of uplink requests when the MH is reconnected. Moreover, the user proxy takes the responsibility of mobility management to further reduce the network traffic. We investigate a design by which the MH's proxy serves as a gateway foreign agent (GFA) as in the MIP Regional Registration protocol to keep track of the address of the MH in a region, with the proxy migrating with the MH when the MH crosses a regional area. We identify the optimal regional area size under which the overall network traffic cost, due to cache consistency management, mobility management, and query requests/replies, is minimized. The integrated cache consistency and mobility management scheme is demonstrated to outperform MIPv6, no-proxy and/or no-cache schemes, as well as a decoupled scheme that optimally but separately manages mobility and service activities in Mobile IPv6 environments.