Event-Triggering in Distributed Networked Systems with Data Dropouts and Delays

  • Authors:
  • Xiaofeng Wang;Michael D. Lemmon

  • Affiliations:
  • Department of Electrical Engineering, University of Notre Dame, Notre Dame, USA 46556;Department of Electrical Engineering, University of Notre Dame, Notre Dame, USA 46556

  • Venue:
  • HSCC '09 Proceedings of the 12th International Conference on Hybrid Systems: Computation and Control
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper studies distributed networked systems with data dropouts and transmission delays. We propose an event-triggering scheme, where a subsystem broadcasts its state information to its neighbors only when the subsystem's local state error exceeds a specified threshold. This scheme is completely decentralized, which means that a subsystem's broadcast decisions are made using its local sampled data, the maximal allowable transmission delay of a subsystem's broadcast is predicted based on the local information, a subsystem locally identifies the maximal allowable number of its successive data dropouts, and the designer's selection of the threshold only requires information about an individual subsystem and its immediate neighbors. With the assumption that the number of each subsystem's successive data dropouts is less than the bound identified by that subsystem, if the bandwidth of the network is limited so that the transmission delays are always greater than a positive constant, the resulting system is globally uniformly ultimately bounded using our scheme; otherwise, the resulting system is asymptotically stable.