R-ADMAD: high reliability provision for large-scale de-duplication archival storage systems

  • Authors:
  • Chuanyi Liu;Yu Gu;Linchun Sun;Bin Yan;Dongsheng Wang

  • Affiliations:
  • Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China

  • Venue:
  • Proceedings of the 23rd international conference on Supercomputing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Data de-duplication has become a commodity component in data-intensive systems and it is required that these systems provide high reliability comparable to others. Unfortunately, by storing duplicate data chunks just once, de-duped system improves storage utilization at cost of error resilience or reliability. In this paper, R-ADMAD, a high reliability provision mechanism is proposed. It packs variable-length data chunks into fixed sized objects, and exploits ECC codes to encode the objects and distributes them among the storage nodes in a redundancy group, which is dynamically generated according to current status and actual failure domains. Upon failures, R-ADMAD proposes a distributed and dynamic recovery process. Experimental results show that R-ADMAD can provide the same storage utilization as RAID-like schemes, but comparable reliability to replication based schemes with much more redundancy. The average recovery time of R-ADMAD based configurations is about 2-6 times less than RAID-like schemes. Moreover, R-ADMAD can provide dynamic load balancing even without the involvement of the overloaded storage nodes.