Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning

  • Authors:
  • Linli Xu;Martha White;Dale Schuurmans

  • Affiliations:
  • University of Alberta, Edmonton, AB, Canada;University of Alberta, Edmonton, AB, Canada;University of Alberta, Edmonton, AB, Canada

  • Venue:
  • ICML '09 Proceedings of the 26th Annual International Conference on Machine Learning
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Training principles for unsupervised learning are often derived from motivations that appear to be independent of supervised learning. In this paper we present a simple unification of several supervised and unsupervised training principles through the concept of optimal reverse prediction: predict the inputs from the target labels, optimizing both over model parameters and any missing labels. In particular, we show how supervised least squares, principal components analysis, k-means clustering and normalized graph-cut can all be expressed as instances of the same training principle. Natural forms of semi-supervised regression and classification are then automatically derived, yielding semi-supervised learning algorithms for regression and classification that, surprisingly, are novel and refine the state of the art. These algorithms can all be combined with standard regularizers and made non-linear via kernels.