Characterization of Vehicle-to-Vehicle Radio Channels from Measurements at 5.2 GHz

  • Authors:
  • Alexander Paier;Johan Karedal;Nicolai Czink;Charlotte Dumard;Thomas Zemen;Fredrik Tufvesson;Andreas F. Molisch;Christoph F. Mecklenbräuker

  • Affiliations:
  • Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universität Wien, Vienna, Austria;Department of Electrical and Information Technology, Lund University, Lund, Sweden;Forschungszentrum Telekommunikation Wien (ftw.), Vienna, Austria and Smart Antennas Research Group, Information Systems Lab, Standford University, Stanford, USA 94305;Forschungszentrum Telekommunikation Wien (ftw.), Vienna, Austria;Forschungszentrum Telekommunikation Wien (ftw.), Vienna, Austria;Department of Electrical and Information Technology, Lund University, Lund, Sweden;Department of Electrical and Information Technology, Lund University, Lund, Sweden and Mitsubishi Electric Research Labs, Cambridge, USA;Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universität Wien, Vienna, Austria

  • Venue:
  • Wireless Personal Communications: An International Journal
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The development of efficient vehicle-to-vehicle (V2V) communications systems requires an understanding of the underlying propagation channels. In this paper, we present results on pathloss, power-delay profiles (PDPs), and delay-Doppler spectra from a high speed measurement campaign on a highway in Lund, Sweden. Measurements were performed at a carrier frequency of 5.2 GHz with the communicating vehicles traveling on the highway in opposite directions. A pathloss coefficient of 1.8 shows the best fit in the mean square sense with our measurement. The average root mean square (RMS) delay spread is between 263 ns and 376 ns, depending on the noise threshold. We investigate and describe selected paths in the delay-Doppler domain, where we observe Doppler shifts of more than 1,000 Hz.