A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs

  • Authors:
  • N. Ben Abdallah;M. J. Cáceres;J. A. Carrillo;F. Vecil

  • Affiliations:
  • Institut de Mathématiques, Université de Toulouse, Université Paul Sabatier, France;Departamento de Matemática Aplicada, Universidad de Granada, Spain;ICREA and Departament de Matemítiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain;Johann Radon Institute for Computational and Applied Mathematics (RICAM), Österreichische Akademie der Wissenschaften, Linz, Austria

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2009

Quantified Score

Hi-index 31.45

Visualization

Abstract

We model a nanoMOSFET by a mesoscopic, time-dependent, coupled quantum-classical system based on a sub-band decomposition and a simple scattering operator. We first compute the sub-band decomposition and electrostatic force field described by a Schrodinger-Poisson coupled system solved by a Newton-Raphson iteration using the eigenvalue/eigenfunction decomposition. The transport in the classical direction for each sub-band modeled by semiclassical Boltzmann-type equations is solved by conservative semi-lagrangian characteristic-based methods. Numerical results are shown for both the thermodynamical equilibrium and time-dependent simulations in typical nowadays nanoMOSFETs.