On the Weak Ideal Compression Functions

  • Authors:
  • Akira Numayama;Keisuke Tanaka

  • Affiliations:
  • Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan 152-8552;Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan 152-8552

  • Venue:
  • ACISP '09 Proceedings of the 14th Australasian Conference on Information Security and Privacy
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In SAC 2006, Liskov introduced the weak ideal compression functions. He proved that a hash construction based on these functions is indifferentiable from the random oracle. In ICALP 2008, Hoch and Shamir applied Liskov's idea and proved the indifferentiability of another hash construction. However, these proofs of indifferentiability can have gaps in certain situations. In this paper, we formalize these situations and propose the simulation method which covers these situations. In particular, we apply our simulation method to the latter proof of indifferentiability, and concretely analyze the security of the latter hash construction. We can derive a lower bound to find a collision in the concatenated hash construction, which covers the gaps of the original proof.