Merkle-Damgård revisited: how to construct a hash function

  • Authors:
  • Jean-Sébastien Coron;Yevgeniy Dodis;Cécile Malinaud;Prashant Puniya

  • Affiliations:
  • University of Luxembourg;New-York University;Gemplus Card International;New-York University

  • Venue:
  • CRYPTO'05 Proceedings of the 25th annual international conference on Advances in Cryptology
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The most common way of constructing a hash function (e.g., SHA-1) is to iterate a compression function on the input message. The compression function is usually designed from scratch or made out of a block-cipher. In this paper, we introduce a new security notion for hash-functions, stronger than collision-resistance. Under this notion, the arbitrary length hash function H must behave as a random oracle when the fixed-length building block is viewed as a random oracle or an ideal block-cipher. The key property is that if a particular construction meets this definition, then any cryptosystem proven secure assuming H is a random oracle remains secure if one plugs in this construction (still assuming that the underlying fixed-length primitive is ideal). In this paper, we show that the current design principle behind hash functions such as SHA-1 and MD5 — the (strengthened) Merkle-Damgård transformation — does not satisfy this security notion. We provide several constructions that provably satisfy this notion; those new constructions introduce minimal changes to the plain Merkle-Damgård construction and are easily implementable in practice.