Constructing VIL-MACsfrom FIL-MACs: Message Authentication under Weakened Assumptions

  • Authors:
  • Jee Hea An;Mihir Bellare

  • Affiliations:
  • -;-

  • Venue:
  • CRYPTO '99 Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Practical MACs are typically designed by iterating applications of some fixed-input-length (FIL) primitive, namely one like a block cipher or compression function that only applies to data of a fixed length. Existing security analyses of these constructions either require a stronger security property from the FIL primitive (eg. pseudorandomness) than the unforgeability required of the final MAC, or, as in the case of HMAC, make assumptions about the iterated function itself. In this paper we consider the design of iterated MACs under the (minimal) assumption that the given FIL primitive is itself a MAC. We look at three popular transforms, namely CBC, Feistel and the Merkle-Damgård method, and ask for each whether it preserves unforgeability. We show that the answer is no in the first two cases and yes in the third. The last yields an alternative cryptographic hash function based MAC which is secure under weaker assumptions than existing ones, although at a slight increase in cost.