Indifferentiability of domain extension modes for hash functions

  • Authors:
  • Yiyuan Luo;Xuejia Lai;Zheng Gong

  • Affiliations:
  • Department of Computer Science and Engineering, Shanghai Jiao Tong University, China;Department of Computer Science and Engineering, Shanghai Jiao Tong University, China;School of Computer Science, South China Normal University, China

  • Venue:
  • INTRUST'11 Proceedings of the Third international conference on Trusted Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we show that four domain extension modes for hash functions: pfMD, chopMD, NMAC and HMAC have different indifferentiable security levels. Our synthetic analysis shows the chopMD, NMAC and HMAC modes can sustain more weaknesses of the compression function than the pfMD mode. For the pfMD mode, there exist 12 out of 20 collision resistant PGV hash functions which are indifferentiable from a random oracle. This is an improvement on the result of Chang et al. For the chopMD, NMAC and HMAC modes, all the 20 PGV compression functions are indifferentiable from a random oracle. The chopMD mode has better indifferentiable security bound but lower output size than the pfMD, NMAC and HMAC mode; and the HMAC mode can be implemented easier than NMAC. We also show that there exist flaws in the indifferentiability proofs by Coron et al., Chang et al. and Gong et al.