A 3-Component Inverse Depth Parameterization for Particle Filter SLAM

  • Authors:
  • Evren İmre;Marie-Odile Berger

  • Affiliations:
  • INRIA Grand Est- Nancy, France;INRIA Grand Est- Nancy, France

  • Venue:
  • Proceedings of the 31st DAGM Symposium on Pattern Recognition
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The non-Gaussianity of the depth estimate uncertainty degrades the performance of monocular extended Kalman filter SLAM (EKF-SLAM) systems employing a 3-component Cartesian landmark parameterization, especially in low-parallax configurations. Even particle filter SLAM (PF-SLAM) approaches are affected, as they utilize EKF for estimating the map. The inverse depth parameterization (IDP) alleviates this problem through a redundant representation, but at the price of increased computational complexity. The authors show that such a redundancy does not exist in PF-SLAM, hence the performance advantage of the IDP comes almost without an increase in the computational cost.