An Efficient Linear Method for the Estimation of Ego-Motion from Optical Flow

  • Authors:
  • Florian Raudies;Heiko Neumann

  • Affiliations:
  • Institute of Neural Information Processing, University of Ulm, Ulm, Germany 89069;Institute of Neural Information Processing, University of Ulm, Ulm, Germany 89069

  • Venue:
  • Proceedings of the 31st DAGM Symposium on Pattern Recognition
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Approaches to visual navigation, e.g. used in robotics, require computationally efficient, numerically stable, and robust methods for the estimation of ego-motion. One of the main problems for ego-motion estimation is the segregation of the translational and rotational component of ego-motion in order to utilize the translation component, e.g. for computing spatial navigation direction. Most of the existing methods solve this segregation task by means of formulating a nonlinear optimization problem. One exception is the subspace method, a well-known linear method, which applies a computationally high-cost singular value decomposition (SVD). In order to be computationally efficient a novel linear method for the segregation of translation and rotation is introduced. For robust estimation of ego-motion the new method is integrated into the Random Sample Consensus (RANSAC) algorithm. Different scenarios show perspectives of the new method compared to existing approaches.