A framework for representing and solving NP search problems

  • Authors:
  • David G. Mitchell;Eugenia Ternovska

  • Affiliations:
  • Simon Fraser University;Simon Fraser University

  • Venue:
  • AAAI'05 Proceedings of the 20th national conference on Artificial intelligence - Volume 1
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

NP search and decision problems occur widely in AI, and a number of general-purpose methods for solving them have been developed. The dominant approaches include propositional satisfiability (SAT), constraint satisfaction problems (CSP), and answer set programming (ASP). Here, we propose a declarative constraint programming framework which we believe combines many strengths of these approaches, while addressing weaknesses in each of them. We formalize our approach as a model extension problem, which is based on the classical notion of extension of a structure by new relations. A parameterized version of this problem captures NP. We discuss properties of the formal framework intended to support effective modelling, and prospects for effective solver design.