A semantic account for modularity in multi-language modelling of search problems

  • Authors:
  • Shahab Tasharrofi;Eugenia Ternovska

  • Affiliations:
  • Simon Fraser University, Canada;Simon Fraser University, Canada

  • Venue:
  • FroCoS'11 Proceedings of the 8th international conference on Frontiers of combining systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Motivated by the need to combine systems and logics, we develop a modular approach to the model expansion (MX) problem, a task which is common in applications such as planning, scheduling, computational biology, formal verification. We develop a modular framework where parts of a modular system can be written in different languages. We start our development from a previous work, [14], but modify and extend that framework significantly. In particular, we use a model-theoretic setting and introduce a feedback (loop) operator on modules. We study the expressive power of our framework and demonstrate that adding the feedback operator increases the expressive power considerably. We prove that, even with individual modules being polytime solvable, the framework is expressive enough to capture all of NP, a property which does not hold without loop. Moreover, we demonstrate that, using monotonicity and anti-monotonicity of modules, one can significantly reduce the search space of a solution to a modular system.