WiFi-SLAM using Gaussian process latent variable models

  • Authors:
  • Brian Ferris;Dieter Fox;Neil Lawrence

  • Affiliations:
  • University of Washington, Department of Computer Science & Engineering;University of Washington, Department of Computer Science & Engineering;University of Sheffield, Department of Computer Science

  • Venue:
  • IJCAI'07 Proceedings of the 20th international joint conference on Artifical intelligence
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

WiFi localization, the task of determining the physical location of a mobile device from wireless signal strengths, has been shown to be an accurate method of indoor and outdoor localization and a powerful building block for location-aware applications. However, most localization techniques require a training set of signal strength readings labeled against a ground truth location map, which is prohibitive to collect and maintain as maps grow large. In this paper we propose a novel technique for solving the WiFi SLAM problem using the Gaussian Process Latent Variable Model (GPLVM) to determine the latent-space locations of unlabeled signal strength data. We show how GPLVM, in combination with an appropriate motion dynamics model, can be used to reconstruct a topological connectivity graph from a signal strength sequence which, in combination with the learned Gaussian Process signal strength model, can be used to perform efficient localization.