Generalizing GraphPlan by formulating planning as a CSP

  • Authors:
  • Adriana Lopez;Fahiem Bacchus

  • Affiliations:
  • Dept. of Computer Science, University of Toronto, Toronto, Ontario, Canada;Dept. of Computer Science, University of Toronto, Toronto, Ontario, Canada

  • Venue:
  • IJCAI'03 Proceedings of the 18th international joint conference on Artificial intelligence
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

We examine the approach of encoding planning problems as CSPs more closely. First we present a simple CSP encoding for planning problems and then a set of transformations that can be used to eliminate variables and add new constraints to the encoding. We show that our transformations uncover additional structure in the planning problem, structure that subsumes the structure uncovered by GRAPHPLAN planning graphs. We solve the CSP encoded planning problem by using standard CSP algorithms. Empirical evidence is presented to validate the effectiveness of this approach to solving planning problems, and to show that even a prototype implementation is more effective than standard GRAPHPLAN. Our prototype is even competitive with far more optimized planning graph based implementations. We also demonstrate that this approach can be more easily lifted to more complex types of planning than can planning graphs. In particular, we show that the approach can be easily extended to planning with resources.