Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint

  • Authors:
  • Haiping Du;Nong Zhang

  • Affiliations:
  • Faculty of Engineering, University of Technology, Sydney, N.S.W., Australia;Faculty of Engineering, University of Technology, Sydney, N.S.W., Australia

  • Venue:
  • IEEE Transactions on Fuzzy Systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a Takagi-Sugeno (T-S) model-based fuzzy control design approach for electrohydraulic active vehicle suspensions considering nonlinear dynamics of the actuator, sprung mass variation, and constraints on the control input. The T-S fuzzy model is first applied to represent the nonlinear uncertain electrohydraulic suspension. Then, a fuzzy state feed-back controller is designed for the obtained T-S fuzzy model with optimized H∞ performance for ride comfort by using the parallel-distributed compensation (PDC) scheme. The sufficient conditions for the existence of such a controller are derived in terms of linear matrix inequalities (LMIs). Numerical simulations on a full-car suspension model are performed to validate the effectiveness of the proposed approach. The obtained results show that the designed controller can achieve good suspension performance despite the existence of nonlinear actuator dynamics, sprung mass variation, and control input constraints.