Strategyproof classification with shared inputs

  • Authors:
  • Reshef Meir;Ariel D. Procaccia;Jeffrey S. Rosenschein

  • Affiliations:
  • The School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel;Microsoft Israel R&D Center, Herzeliya, Israel;The School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel

  • Venue:
  • IJCAI'09 Proceedings of the 21st international jont conference on Artifical intelligence
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Strategy proof classification deals with a setting where a decision-maker must classify a set of input points with binary labels, while minimizing the expected error. The labels of the input points are reported by self-interested agents, who might lie in order to obtain a classifier that more closely matches their own labels, thus creating a bias in the data; this motivates the design of truthful mechanisms that discourage false reports. Previous work [Meir et al., 2008] investigated both decision-theoretic and learning-theoretic variations of the setting, but only considered classifiers that belong to a degenerate class. In this paper we assume that the agents are interested in a shared set of input points. We show that this plausible assumption leads to powerful results. In particular, we demonstrate that variations of a truthful random dictator mechanism can guarantee approximately optimal outcomes with respect to any class of classifiers.