Bit-Parallel Arithmetic in a Massively-Parallel Associative Processor

  • Authors:
  • Isaac D. Scherson;David A. Kramer;Brian D. Alleyne

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1992

Quantified Score

Hi-index 14.98

Visualization

Abstract

A simple but powerful architecture based on the classical associative processor model is proposed. By distributing logic among slices of storage cells such that a number of bit-planes share a simple logic unit, bit-parallel arithmetic for massively parallel processing becomes feasible. For m-bit operands, this architecture enables complex operations such as multiplication and division to execute in O(m) cycles as opposed to O(m/sup 2/) for bit-serial machines. Algorithms which utilize this bit-parallel property to efficiently perform operations on floating point data have been developed. The simplicity of the architecture enables its implementation using VLSI technology, and hence allows the construction of a word-parallel, bit-parallel, massively parallel (P/sup 3/) computing system. Implementations of the fast Fourier transform and matrix multiplication are presented to illustrate the operation of this system.