Intermittent Fault Diagnosis in Multiprocessor Systems

  • Authors:
  • Douglas M. Blough;Gregory F. Sullivan;Gerald M. Masson

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Computers
  • Year:
  • 1992

Quantified Score

Hi-index 14.99

Visualization

Abstract

The authors present and analyze a probabilistic model for the self-diagnosis capabilities of a multiprocessor system. In this model an individual processor fails with probability p and a nonfaulty processor testing a faulty processor detects a fault with probability q. This models the situation where processors can be intermittently faulty or the situation where tests are not capable of detecting all possible faults within a processor. An efficient algorithm that can achieve correct diagnosis with high probability in systems of O(n log n) connections, where n is the number of processors, is presented. It is the first algorithm to be able to diagnose a large number of intermittently faulty processors in a class of systems that includes hypercubes. It is shown that, under this model, no algorithm can achieve correct diagnosis with high probability in regular systems which conduct a number of tests dominated by n log n. Examples of systems which perform a modest number of tests are given in which the probability of correct diagnosis for the algorithm is very nearly one.