Optimal communication-computation tradeoff for wireless multimedia sensor network lifetime maximization

  • Authors:
  • Muhammad Tahir;Ronan Farrell

  • Affiliations:
  • Centre for Telecommunications Value Chain Research, National University of Ireland, Maynooth;Centre for Telecommunications Value Chain Research, National University of Ireland, Maynooth

  • Venue:
  • WCNC'09 Proceedings of the 2009 IEEE conference on Wireless Communications & Networking Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We address the issue of network lifetime maximization for a special class of wireless sensor networks namely, wireless multi-media sensor networks. High data rates, in these networks at the sensor nodes, compared to the conventional sensor networks and the presence of high temporal correlation in the sampled data make them a suitable candidate for the in-network processing, primarily at the sensor node itself. Using these distinguishing features of wireless multi-media sensor networks to our advantage, we have proposed a framework achieving an optimal tradeoff between communication and computation power consumption leading to network lifetime maximization under the delay quality of service constraints. The distributed implementation of the algorithm realizing the proposed framework is achieved using duality theory. A max-min fairness index based measure of network lifetime maximization is studied as a function of end-to-end delay thresholds. Numerical results show how the total network power consumption is distributed between the communication and the computation power consumption components. The results also provide an insight about the maximum and minimum nodal power consumptions. Our results show that the superior performance in terms of max-min fairness index at higher end-to-end delay thresholds is mainly attributed to the relative lower computation cost compared to the communication cost.