Segmentation and Classification of Cell Cycle Phases in Fluorescence Imaging

  • Authors:
  • Ilker Ersoy;Filiz Bunyak;Vadim Chagin;M. Christina Cardoso;Kannappan Palaniappan

  • Affiliations:
  • Department of Computer Science, University of Missouri Columbia, USA;Department of Computer Science, University of Missouri Columbia, USA;Department of Biology, Technische Universität Darmstadt, Germany and Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia;Department of Biology, Technische Universität Darmstadt, Germany;Department of Computer Science, University of Missouri Columbia, USA

  • Venue:
  • MICCAI '09 Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part II
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.