Deaf, Dumb, and Chatting Asynchronous Robots

  • Authors:
  • Yoann Dieudonné;Shlomi Dolev;Franck Petit;Michael Segal

  • Affiliations:
  • MIS, Université of Picardie Jules Verne, France;Department of Computer Science, Ben-Gurion University of the Negev, Israel;LiP6/CNRS/INRIA-REGAL, Université Pierre et Marie Curie, Paris 6, France;Communication Systems Engineering Dept, Ben-Gurion University of the Negev, Israel

  • Venue:
  • OPODIS '09 Proceedings of the 13th International Conference on Principles of Distributed Systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We investigate avenues for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among robots. We propose one-to-one deterministic movement protocols that implement explicit communication among asynchronous robots. We first show how the movements of robots can provide implicit acknowledgment in asynchronous systems. We use this result to design one-to-one communication among a pair of robots. Then, we propose two one-to-one communication protocols for any system of n *** 2 robots. The former works for robots equipped with observable IDs that agree on a common direction (sense of direction). The latter enables one-to-one communication assuming robots devoid of any observable IDs or sense of direction. All three protocols (for either two or any number of robots) assume that no robot remains inactive forever. However, they cannot avoid that the robots move either away or closer of each others, by the way requiring robots with an infinite visibility. In this paper, we also present how to overcome these two disadvantages. These protocols enable the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots. They also allow robots to be equipped with the means of communication to tolerate faults in their communication devices.