Autonomous planetary exploration using LIDAR data

  • Authors:
  • Ioannis Rekleitis;Jean-Luc Bedwani;Erick Dupuis

  • Affiliations:
  • School of Computer Science, McGill University;Canadian Space Agency;Canadian Space Agency

  • Venue:
  • ICRA'09 Proceedings of the 2009 IEEE international conference on Robotics and Automation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we present the approach for autonomous planetary exploration developed at the Canadian Space Agency. The goal of this work is to autonomously navigate to remote locations, well beyond the sensing horizon of the rover, with minimal interaction with a human operator. We employ LIDAR range sensors due to their accuracy, long range and robustness in the harsh lighting conditions of space. Irregular Triangular Meshes (ITMs) are used for representing the environment providing an accurate yet compact spatial representation. In this paper a novel path-planning technique through the ITM is introduced, which guides the rover through flatter terrain and safely away from obstacles. Experiments performed in CSA's Mars emulation terrain that validate our approach are also presented.