On the complexity and consistency of UKF-based SLAM

  • Authors:
  • Guoquan P. Huang;Anastasios I. Mourikis;Stergios I. Roumeliotis

  • Affiliations:
  • Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN;Department of Electrical Engineering, University of California, Riverside, CA;Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

  • Venue:
  • ICRA'09 Proceedings of the 2009 IEEE international conference on Robotics and Automation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper addresses two key limitations of the unscented Kalman filter (UKF) when applied to the simultaneous localization and mapping (SLAM) problem: the cubic, in the number of states, computational complexity, and the inconsistency of the state estimates. In particular, we introduce a new sampling strategy that minimizes the linearization error and whose computational complexity is constant (i.e., independent of the size of the state vector). As a result, the overall computational complexity of UKF-based SLAM becomes of the same order as that of the extended Kalman filter (EKF) when applied to SLAM. Furthermore, we investigate the observability properties of the linear-regression-based model employed by the UKF, and propose a new algorithm, termed the Observability-Constrained (OC)-UKF, that improves the consistency of the state estimates. The superior performance of the OC-UKF compared to the standard UKF and its robustness to large linearization errors are validated by extensive simulations.